Name is Phthalazin-1(2H)-one, as a common heterocyclic compound, it belongs to phthalazine compound, and cas is 119-39-1, its synthesis route is as follows.
Method A The Mitsunobu reaction was carried out under argon. Diethyl azodicarboxylate (1.03 mmol, solution in toluene c?40%) was slowly added to a stirred solution of triphenylphosphine (1.03 mmol) in dry THF (10mL) at the temperature between -10C and -5C. Then a solution of phthalazinone 2 (0.684 mmol) in THF (10 mL) was added dropwise. The whole lot was mixed for 15 min at this temperature and next the appropriate alcohol (0.753 mmol) in THF (5 mL) was added at -10 to -5C. The mixture was stirred during 2 h at this conditions, after, which time the reaction mixture was warmed to ambient temperature and stirred in this conditions for 24h. All volatile materials were removed under reduced pressure, ethyl ether (5 mL) was added to the residue, and the whole lot was stirred for 0.5 h at an ambient temperature. The separate white solid was collected by flirtation and washed with ether, and the filtrate was evaporated to dryness. The product was separated and purified by flash chromatography. Method B The Mitsunobu reaction was carried out under argon. To a round bottom flask were added phthalazinone 2 or 3 (1.78 mmol), alcohol (2.67 mmol), triphenylphosphine (2.67 mmol) and THF (40 mL). Then, the solution was cooled to the temperature -20C for 15 min and diethyl azodicarboxylate (2.67mmol, solution in toluene c?40%) was added dropwise to the solution. The reaction was stirred at -20C for 1h, and then the cold bath allowed to slowly warm to an ambient temperature and stirred in this conditions for 24h. All volatile materials were removed under reduced pressure, diethyl ether (15 mL) was added to the residue, and the whole lot was stirred for 0.5 h at an ambient temperature. The separate white solid was collected by flirtation and washed with ether, and the filtrate was evaporated to dryness. The product was separated and purified by flash chromatography. 2-(Butan-2-yl)phthalazin-1(2H)-one (10a) Straw oil; Yield: 41.5 mg, 30% (Method A), 259 mg, 72% (Method B); Rf (AcOEt/Hex 1:3)=0.5; FTIR (thin film): nu=3044, 2968, 2933, 1644 (C=O), 1591 cm-1; 1H NMR (600 MHz, CDCl3): delta=8.43 (d, J=7.8 Hz, 1H, 8 Ar-H), 8.20 (s, 1H, 4-pyrid), 7.80-7.71 (m, 2H, Ar-H), 7.67 (d, J=8.2 Hz, 1H, 5 Ar-H), 5.38-5.06 (m, 1H, N-CH), 1.95-1.86 (m, 1H, CH2), 1.77-1.68 (m, 1H, CH2), 1.37 (d, J=6.8 Hz, 3H, Me), 0.84 (t, J=7.4 Hz, 3H, Me); 13C NMR (150 MHz, CDCl3): delta=159.6 (C=O), 137.7, 133.0, 131.5, 129.4, 128.0, 127.1, 125.9, 54.1 (N-CH), 28.4, 19.4, 10.9 ppm; HRMS (ESI) m/z: calcd for C12H15N2O [M+H]+ 203.1179, found 203.1179.
119-39-1, In the field of chemistry, the synthetic routes of compounds are constantly being developed and updated. I will also mention this compound in other articles.,119-39-1 ,Phthalazin-1(2H)-one, other downstream synthetic routes, hurry up and to see
Reference£º
Article; Malinowski, Zbigniew; Fornal, Emilia; Sieroci?ska, Beata; Czeczko, Renata; Nowak, Monika; Tetrahedron; vol. 72; 49; (2016); p. 7942 – 7951;,
Phthalazine – Wikipedia
Phthalazine | C8H6N2 – PubChem