An article Heterodinuclear zinc and magnesium catalysts for epoxide/CO2 ring opening copolymerizations WOS:000465940700006 published article about CARBON-DIOXIDE; CYCLOHEXENE OXIDE; ALTERNATING COPOLYMERIZATION; CO2/EPOXIDE COPOLYMERIZATION; ASYMMETRIC COPOLYMERIZATION; TRIBLOCK COPOLYMERS; CYCLOPENTENE OXIDE; DIZINC CATALYST; MG-ZN; CO2 in [Trott, Gemma; Williams, Charlotte K.] Univ Oxford, Chem Res Lab, Mansfield Rd, Oxford OX1 3TA, England; [Garden, Jennifer A.] Univ Edinburgh, Sch Chem, Edinburgh EH9 3FJ, Midlothian, Scotland in 2019.0, Cited 64.0. The Name is 4-Nitrobenzoic acid. Through research, I have a further understanding and discovery of 62-23-7. Product Details of 62-23-7
The ring-opening copolymerization of carbon dioxide and epoxides is a useful means to make aliphatic polycarbonates and to add-value to CO2. Recently, the first heterodinuclear Zn(II)/Mg(II) catalyst showed greater activity than either homodinuclear analogue (J. Am. Chem. Soc. 2015, 137, 15078-15081). Building from this preliminary finding, here, eight new Zn(II)/Mg(II) heterodinuclear catalysts featuring carboxylate co-ligands are prepared and characterized. The best catalysts show very high activities for copolymerization using cyclohexene oxide (TOF 1/4 8880 h 1, 20 bar CO2, 120 C, 0.01 mol% catalyst loading) or cyclopentene oxide. All the catalysts are highly active in the low pressure regime and specifically at 1 bar pressure CO2. The polymerization kinetics are analysed using in situ spectroscopy and aliquot techniques: the rate law is overall second order with a first order dependence in both catalyst and epoxide concentrations and a zero order in carbon dioxide pressure. The pseudo first order rate coefficient values are compared for the catalyst series and differences are primarily attributed to effects on initiation rates. The data are consistent with a chain shuttling mechanistic hypothesis with heterodinuclear complexes showing particular rate enhancements by optimizing distinct roles in the catalytic cycles. The mechanistic hypothesis should underpin future heterodinuclear catalyst design for use both in other (co) polymerization and carbon dioxide utilization reactions.
Welcome to talk about 62-23-7, If you have any questions, you can contact Trott, G; Garden, JA; Williams, CK or send Email.. Product Details of 62-23-7
Reference:
Phthalazine – Wikipedia,
,Phthalazine | C8H6N2 – PubChem