Ali, Sehar et al. published their research in PLoS One in 2021 | CAS: 212141-54-3

N-(4-Chlorophenyl)-4-(pyridin-4-ylmethyl)phthalazin-1-amine (cas: 212141-54-3) belongs to phthalazine derivatives. Like many other isomeric benzodiazines, phthalazine derivatives reveal numerous pharmacological and biological activities such as antimicrobial, antidiabetic, analgesic, anticonvulsant, antitumor, antiproliferative, antiepileptic, anti-inflammatory, and vasorelaxant. Phthalazine derivatives are also considered as p38MAP kinase inhibitors, selective binders of gamma-aminobutyric acid (GABA) receptors, cyclooxygenase-2 (COX-2) inhibitors, and high-affinity ligands of voltages gated calcium channels.Product Details of 212141-54-3

Changes in the tumor microenvironment and outcome for TME-targeting therapy in glioblastoma: A pilot study was written by Ali, Sehar;Borin, Thaiz F.;Piranlioglu, Raziye;Ara, Roxan;Lebedyeva, Iryna;Angara, Kartik;Achyut, Bhagelu R.;Arbab, Ali Syed;Rashid, Mohammad H.. And the article was included in PLoS One in 2021.Product Details of 212141-54-3 This article mentions the following:

Glioblastoma (GBM) is a hypervascular and aggressive primary malignant tumor of the central nervous system. Recent investigations showed that traditional therapies along with antiangiogenic therapies failed due to the development of post-therapy resistance and recurrence. Previous investigations showed that there were changes in the cellular and metabolic compositions in the tumor microenvironment (TME). It can be said that tumor cell-directed therapies are ineffective and rethinking is needed how to treat GBM. It is hypothesized that the composition of TME-associated cells will be different based on the therapy and therapeutic agents, and TME-targeting therapy will be better to decrease recurrence and improve survival. Therefore, the purpose of this study is to determine the changes in the TME in respect of T-cell population, M1 and M2 macrophage polarization status, and MDSC population following different treatments in a syngeneic model of GBM. In addition to these parameters, tumor growth and survival were also studied following different treatments. The results showed that changes in the TME-associated cells were dependent on the therapeutic agents, and the TME-targeting therapy improved the survival of the GBM bearing animals. The current GBM therapies should be revisited to add agents to prevent the accumulation of bone marrow-derived cells in the TME or to prevent the effect of immune-suppressive myeloid cells in causing alternative neovascularization, the revival of glioma stem cells, and recurrence. Instead of concurrent therapy, a sequential strategy would be better to target TME-associated cells. In the experiment, the researchers used many compounds, for example, N-(4-Chlorophenyl)-4-(pyridin-4-ylmethyl)phthalazin-1-amine (cas: 212141-54-3Product Details of 212141-54-3).

N-(4-Chlorophenyl)-4-(pyridin-4-ylmethyl)phthalazin-1-amine (cas: 212141-54-3) belongs to phthalazine derivatives. Like many other isomeric benzodiazines, phthalazine derivatives reveal numerous pharmacological and biological activities such as antimicrobial, antidiabetic, analgesic, anticonvulsant, antitumor, antiproliferative, antiepileptic, anti-inflammatory, and vasorelaxant. Phthalazine derivatives are also considered as p38MAP kinase inhibitors, selective binders of gamma-aminobutyric acid (GABA) receptors, cyclooxygenase-2 (COX-2) inhibitors, and high-affinity ligands of voltages gated calcium channels.Product Details of 212141-54-3

Referemce:
Phthalazine – Wikipedia,
Phthalazine | C8H6N2 – PubChem