Analyzing the synthesis route of 253-52-1

Chemical properties determine the actual use. Each compound has specific chemical properties and uses. We look forward to more synthetic routes in the future to expand reaction routes of Phthalazine, 253-52-1

253-52-1, In the next few decades, the world population will flourish. As the population grows rapidly and people all over the world use more and more resources, all industries must consider their environmental impact. Phthalazine, cas is 253-52-1,the phthalazine compound, it is a common compound, a new synthetic route is introduced below.

General procedure: In a Schlenk tube charged with a stirring bar, the air-stable bidentate Lewis acid catalyst B (5.00 mol percent) and the stated solvent were added under N2. Then, the phthalazine (1.00 equiv), dienophile (2.00 equiv; for enamines, generated in situ from aldehyde and amine) were added subsequently. The reaction mixture was stirred at the given temperature. After the reaction was finished, the solvent was removed. The remaining residue was purified by flash column chromatography over SiO2 to obtain the product.

Chemical properties determine the actual use. Each compound has specific chemical properties and uses. We look forward to more synthetic routes in the future to expand reaction routes of Phthalazine, 253-52-1

Reference£º
Article; Hong, Longcheng; Ahles, Sebastian; Heindl, Andreas H.; Tietcha, Gastelle; Petrov, Andrey; Lu, Zhenpin; Logemann, Christian; Wegner, Hermann A.; Beilstein Journal of Organic Chemistry; vol. 14; (2018); p. 618 – 625;,
Phthalazine – Wikipedia
Phthalazine | C8H6N2 – PubChem

Downstream synthetic route of Phthalazine

253-52-1, In the field of chemistry, the synthetic routes of compounds are constantly being developed and updated. I will also mention this compound in other articles.,253-52-1 ,Phthalazine, other downstream synthetic routes, hurry up and to see

Name is Phthalazine, as a common heterocyclic compound, it belongs to phthalazine compound, and cas is 253-52-1, its synthesis route is as follows.

General procedure: In a Schlenk tubecharged with a stirring bar, the air-stable bidentate Lewis acid catalyst B (5.00 mol percent)and the stated solvent were added under N2. Then, the phthalazine (1.00 equiv),dienophile (2.00 equiv; for enamines, generated in situ from aldehyde and amine)were added subsequently. The reaction mixture was stirred at the given temperature.After the reaction was finished, the solvent was removed. The remaining residue waspurified by flash column chromatography over SiO2 to obtain the product.

253-52-1, In the field of chemistry, the synthetic routes of compounds are constantly being developed and updated. I will also mention this compound in other articles.,253-52-1 ,Phthalazine, other downstream synthetic routes, hurry up and to see

Reference£º
Article; Hong, Longcheng; Ahles, Sebastian; Heindl, Andreas H.; Tietcha, Gastelle; Petrov, Andrey; Lu, Zhenpin; Logemann, Christian; Wegner, Hermann A.; Beilstein Journal of Organic Chemistry; vol. 14; (2018); p. 618 – 625;,
Phthalazine – Wikipedia
Phthalazine | C8H6N2 – PubChem

The important role of 253-52-1

The chemical industry reduces the impact on the environment during synthesis,253-52-1,Phthalazine,I believe this compound will play a more active role in future production and life.

253-52-1, In the next few decades, the world population will flourish. As the population grows rapidly and people all over the world use more and more resources, all industries must consider their environmental impact. Phthalazine, cas is 253-52-1,the phthalazine compound, it is a common compound, a new synthetic route is introduced below.

General procedure: Phthalazine (1) (91 mg, 0.70 mmol), 1,1-dicyanoalkene 2(0.70 mmol), and isocyanide 3 (0.70 mmol) were dissolvedin acetonitrile (1 ml). After that, distilled water(0.05?0.1 ml) was added to the reaction mixture up tovisible turbidity and stirred at 25?30¡ãC for 12?18 h. Thereaction mixture was evaporated to dryness and product 4was purified by crystallization from ethanol.

The chemical industry reduces the impact on the environment during synthesis,253-52-1,Phthalazine,I believe this compound will play a more active role in future production and life.

Reference£º
Article; Mironov, Maxim A.; Shulepov, Iliya D.; Kozhikhova, Ksenia V.; Ivantsova, Maria N.; Tokareva, Maria I.; Chemistry of Heterocyclic Compounds; vol. 53; 4; (2017); p. 430 – 433; Khim. Geterotsikl. Soedin.; vol. 53; 4; (2017); p. 430 – 433,4;,
Phthalazine – Wikipedia
Phthalazine | C8H6N2 – PubChem

Some tips on 253-52-1

Chemical properties determine the actual use. Each compound has specific chemical properties and uses. We look forward to more synthetic routes in the future to expand reaction routes of Phthalazine, 253-52-1

253-52-1, In the next few decades, the world population will flourish. As the population grows rapidly and people all over the world use more and more resources, all industries must consider their environmental impact. Phthalazine, cas is 253-52-1,the phthalazine compound, it is a common compound, a new synthetic route is introduced below.

To a stirred solution of furan (1.20 g,17.6 mmol) in dry THF (20 mL) was added dropwise n-butyllithium (2.5 M in hexanes, 7.30 mL,18.3 mmol) over a period of 30 min at ?78 ¡ãC. The solution was warmed to ?25 ¡ãC, and stirring wascontinued at this temperature for 30 min. The reaction mixture was cooled back to ?78 ¡ãC, and asolution of 1 (2.00 g, 15.3 mmol) in dry THF (20 mL) was added dropwise over 30 min. The reaction mixture was stirred at this temperature for 2 h. The mixture was poured into saturated NH4Cl(100 mL) and extracted with ethyl acetate (3 ¡Á 50 mL). The combined organic extracts were thenwashed with saturated NaCl (50 mL), dried (MgSO4), filtered, and concentrated under vacuum toafford 3f as a light brown oil. The crude product 3f was dissolved in DCM (30 mL), and triethylamine(2.37 g, 3.26 mL, 23.4 mmol) was added, followed by dropwise addition of acryloyl chloride (1.59 g,1.43 mL, 17.6 mmol) at 0 ¡ãC. The reaction mixture was stirred at 0 ¡ãC for 2 h. The reaction was thenquenched with saturated NaCl (25 mL), and the organic layer was separated. The aqueous layer wasextracted with DCM (2 ¡Á 30 mL), and the combined organic extracts were washed with saturated NaCl(50 mL), dried (MgSO4), filtered, and concentrated to afford the crude product. The product waspurified on a silica gel column eluted with hexanes?EtOAc (7:3) to afford 4f (2.66 g, 60percent) as a yellowliquid.

Chemical properties determine the actual use. Each compound has specific chemical properties and uses. We look forward to more synthetic routes in the future to expand reaction routes of Phthalazine, 253-52-1

Reference£º
Article; Nammalwar, Baskar; Muddala, N.Prasad; Bourne, Christina R.; Henry, Mary; Bourne, Philip C.; Bunce, Richard A.; Barrow, Esther W.; Berlin, K.Darrell; Barrow, William W.; Molecules; vol. 19; 3; (2014); p. 3231 – 3246;,
Phthalazine – Wikipedia
Phthalazine | C8H6N2 – PubChem

Some tips on Phthalazine

253-52-1, In the field of chemistry, the synthetic routes of compounds are constantly being developed and updated. I will also mention this compound in other articles.,253-52-1 ,Phthalazine, other downstream synthetic routes, hurry up and to see

Name is Phthalazine, as a common heterocyclic compound, it belongs to phthalazine compound, and cas is 253-52-1, its synthesis route is as follows.

To a stirred solution of 1-methylindole (1.50 g, 11.4 mmol) in dry THF (25 mL) was added dropwise n-BuLi (6.86 mL,17.2 mmol, 2.5 M in hexanes) over a period of 30 min at ?78 ¡ãC. The solution was warmed to ?25 ¡ãC, and stirring was continued at this temperature for 1 h. The reaction mixture was cooled to ?78 ¡ãC, and a solution of 4 (1.48 g, 11.4 mmol) in dry THF (20 mL) was added dropwise over 30 min. The reaction mixture was stirred at this temperature for 2 h. The mixture was poured into saturated NH4Cl (100 mL) and extracted with EtOAc (3 ¡Á 50 mL). The combined organic extracts were washed with saturated NaCl (50 mL), dried (MgSO4), filtered, and concentrated under vacuum to give 5l as a light yellow liquid. The crude product 5l was dissolved in DCM (100 mL), and TEA (2.08 g, 2.87 mL, 20.6 mmol) was added, followed by dropwise addition of acryloyl chloride (0.81 g, 0.73 mL, 8.95 mmol) at 0 ¡ãC. The reaction mixture was stirred at this temperature for an additional 2 h. The aqueous layer was added to saturated NaCl (50 mL), and the organic layer was separated. The aqueous layer was extracted with DCM (2 ¡Á 30 mL), and the combined organic extracts were washed with saturated NaCl (50 mL), dried (MgSO4), filtered, and concentrated to afford the crude product. The product was purified on a silica gel column eluted with hexanes?EtOAc (7:3) to afford 2l (3.01 g, 62percent) as a light yellow solid

253-52-1, In the field of chemistry, the synthetic routes of compounds are constantly being developed and updated. I will also mention this compound in other articles.,253-52-1 ,Phthalazine, other downstream synthetic routes, hurry up and to see

Reference£º
Article; Muddala, Nagendra Prasad; Nammalwar, Baskar; Selvaraju, Subhashini; Bourne, Christina R.; Henry, Mary; Bunce, Richard A.; Berlin, K. Darrell; Barrow, Esther W.; Barrow, William W.; Molecules; vol. 20; 4; (2015); p. 7222 – 7244;,
Phthalazine – Wikipedia
Phthalazine | C8H6N2 – PubChem

Some tips on Phthalazine

253-52-1, In the field of chemistry, the synthetic routes of compounds are constantly being developed and updated. I will also mention this compound in other articles.,253-52-1 ,Phthalazine, other downstream synthetic routes, hurry up and to see

Name is Phthalazine, as a common heterocyclic compound, it belongs to phthalazine compound, and cas is 253-52-1, its synthesis route is as follows.

General procedure: Phthalazine (1) (91 mg, 0.70 mmol), 1,1-dicyanoalkene 2(0.70 mmol), and isocyanide 3 (0.70 mmol) were dissolvedin acetonitrile (1 ml). After that, distilled water(0.05?0.1 ml) was added to the reaction mixture up tovisible turbidity and stirred at 25?30¡ãC for 12?18 h. Thereaction mixture was evaporated to dryness and product 4was purified by crystallization from ethanol.

253-52-1, In the field of chemistry, the synthetic routes of compounds are constantly being developed and updated. I will also mention this compound in other articles.,253-52-1 ,Phthalazine, other downstream synthetic routes, hurry up and to see

Reference£º
Article; Mironov, Maxim A.; Shulepov, Iliya D.; Kozhikhova, Ksenia V.; Ivantsova, Maria N.; Tokareva, Maria I.; Chemistry of Heterocyclic Compounds; vol. 53; 4; (2017); p. 430 – 433; Khim. Geterotsikl. Soedin.; vol. 53; 4; (2017); p. 430 – 433,4;,
Phthalazine – Wikipedia
Phthalazine | C8H6N2 – PubChem

Some tips on 253-52-1

253-52-1, In the field of chemistry, the synthetic routes of compounds are constantly being developed and updated. I will also mention this compound in other articles.,253-52-1 ,Phthalazine, other downstream synthetic routes, hurry up and to see

Name is Phthalazine, as a common heterocyclic compound, it belongs to phthalazine compound, and cas is 253-52-1, its synthesis route is as follows.

General procedure: Phthalazine (1) (91 mg, 0.70 mmol), 1,1-dicyanoalkene 2(0.70 mmol), and isocyanide 3 (0.70 mmol) were dissolvedin acetonitrile (1 ml). After that, distilled water(0.05?0.1 ml) was added to the reaction mixture up tovisible turbidity and stirred at 25?30¡ãC for 12?18 h. Thereaction mixture was evaporated to dryness and product 4was purified by crystallization from ethanol.

253-52-1, In the field of chemistry, the synthetic routes of compounds are constantly being developed and updated. I will also mention this compound in other articles.,253-52-1 ,Phthalazine, other downstream synthetic routes, hurry up and to see

Reference£º
Article; Mironov, Maxim A.; Shulepov, Iliya D.; Kozhikhova, Ksenia V.; Ivantsova, Maria N.; Tokareva, Maria I.; Chemistry of Heterocyclic Compounds; vol. 53; 4; (2017); p. 430 – 433; Khim. Geterotsikl. Soedin.; vol. 53; 4; (2017); p. 430 – 433,4;,
Phthalazine – Wikipedia
Phthalazine | C8H6N2 – PubChem

New learning discoveries about 253-52-1

253-52-1, In the field of chemistry, the synthetic routes of compounds are constantly being developed and updated. I will also mention this compound in other articles.,253-52-1 ,Phthalazine, other downstream synthetic routes, hurry up and to see

It is a common heterocyclic compound, the phthalazine compound, Phthalazine, cas is 253-52-1 its synthesis route is as follows.

General procedure: Phthalazine (1) (91 mg, 0.70 mmol), 1,1-dicyanoalkene 2(0.70 mmol), and isocyanide 3 (0.70 mmol) were dissolvedin acetonitrile (1 ml). After that, distilled water(0.05?0.1 ml) was added to the reaction mixture up tovisible turbidity and stirred at 25?30¡ãC for 12?18 h. Thereaction mixture was evaporated to dryness and product 4was purified by crystallization from ethanol.

253-52-1, In the field of chemistry, the synthetic routes of compounds are constantly being developed and updated. I will also mention this compound in other articles.,253-52-1 ,Phthalazine, other downstream synthetic routes, hurry up and to see

Reference£º
Article; Mironov, Maxim A.; Shulepov, Iliya D.; Kozhikhova, Ksenia V.; Ivantsova, Maria N.; Tokareva, Maria I.; Chemistry of Heterocyclic Compounds; vol. 53; 4; (2017); p. 430 – 433; Khim. Geterotsikl. Soedin.; vol. 53; 4; (2017); p. 430 – 433,4;,
Phthalazine – Wikipedia
Phthalazine | C8H6N2 – PubChem

Some tips on 253-52-1

The chemical industry reduces the impact on the environment during synthesis,253-52-1,Phthalazine,I believe this compound will play a more active role in future production and life.

253-52-1, In the next few decades, the world population will flourish. As the population grows rapidly and people all over the world use more and more resources, all industries must consider their environmental impact. Phthalazine, cas is 253-52-1,the phthalazine compound, it is a common compound, a new synthetic route is introduced below.

A solution of 3.0g (23.3mmol) of phthalazine in 20mL of concentrated sulfuric acid was brought to 100¡ãC. To the phthalazine solution was added portion-wise 18.8g (186mmol) of potassium nitrate over 1-h time period. After 72h at 100¡ãC, the solution was cooled to room temperature, poured over ice, and neutralized with ammonium hydroxide to produce a yellow-tan precipitate. The precipitate was collected and dried to afford 2.3g (56percent) of the 5-nitrophthalazine intermediate as a light yellow solid. 1H NMR (400MHz, DMSO-d6) delta: 10.2 (s, 1 H), 9.98 (s, 1 H), 8.84 (d, J=7.4Hz, 1H), 8.59 (d, J=7.6Hz, 1H), 8.20 (dd, J=7.4, 14.9Hz, 1H). 13C NMR (100.17MHz, DMSO-d6) delta: 152.1, 146.3, 141.0, 133.2, 131.8, 130.0, 127.4, 118.7.

The chemical industry reduces the impact on the environment during synthesis,253-52-1,Phthalazine,I believe this compound will play a more active role in future production and life.

Reference£º
Article; Paige, Mikell; Kosturko, George; Bulut, Gu?llay; Miessau, Matthew; Rahim, Said; Toretsky, Jeffrey A.; Brown, Milton L.; U?ren, Aykut; Bioorganic and Medicinal Chemistry; vol. 22; 1; (2014); p. 478 – 487;,
Phthalazine – Wikipedia
Phthalazine | C8H6N2 – PubChem

New learning discoveries about 253-52-1

253-52-1, In the field of chemistry, the synthetic routes of compounds are constantly being developed and updated. I will also mention this compound in other articles.,253-52-1 ,Phthalazine, other downstream synthetic routes, hurry up and to see

It is a common heterocyclic compound, the phthalazine compound, Phthalazine, cas is 253-52-1 its synthesis route is as follows.

(C) Phthalazine-5,8-dione precursors (Y1 and Y4=C, Y2 and Y3=N) used in the process of the present invention were prepared according to the following reaction scheme 4. The detailed procedure is described in (i) J. Med. Chem., 48, 744-752, and (ii) Bioorganic and Medical Chemistry Letters, 27, 2577-2580.

253-52-1, In the field of chemistry, the synthetic routes of compounds are constantly being developed and updated. I will also mention this compound in other articles.,253-52-1 ,Phthalazine, other downstream synthetic routes, hurry up and to see

Reference£º
Patent; Gerogetown University; Brown, Milton L.; Paige, Mikell; Torestsky, Jeffrey A.; Uren, Aykut; Kosturko, George; Bulut, Gullay; (58 pag.)US9522908; (2016); B2;,
Phthalazine – Wikipedia
Phthalazine | C8H6N2 – PubChem