The important role of 253-52-1

Chemical properties determine the actual use. Each compound has specific chemical properties and uses. We look forward to more synthetic routes in the future to expand reaction routes of Phthalazine, 253-52-1

253-52-1, In the next few decades, the world population will flourish. As the population grows rapidly and people all over the world use more and more resources, all industries must consider their environmental impact. Phthalazine, cas is 253-52-1,the phthalazine compound, it is a common compound, a new synthetic route is introduced below.

General procedure: In a Schlenk tube charged with a stirring bar, the air-stable bidentate Lewis acid catalyst B (5.00 mol percent) and the stated solvent were added under N2. Then, the phthalazine (1.00 equiv), dienophile (2.00 equiv; for enamines, generated in situ from aldehyde and amine) were added subsequently. The reaction mixture was stirred at the given temperature.After the reaction was finished, the solvent was removed. The remaining residue was purified by flash column chromatography over SiO2 to obtain the product.

Chemical properties determine the actual use. Each compound has specific chemical properties and uses. We look forward to more synthetic routes in the future to expand reaction routes of Phthalazine, 253-52-1

Reference£º
Article; Hong, Longcheng; Ahles, Sebastian; Heindl, Andreas H.; Tietcha, Gastelle; Petrov, Andrey; Lu, Zhenpin; Logemann, Christian; Wegner, Hermann A.; Beilstein Journal of Organic Chemistry; vol. 14; (2018); p. 618 – 625;,
Phthalazine – Wikipedia
Phthalazine | C8H6N2 – PubChem

Application of 253-52-1

253-52-1, In the field of chemistry, the synthetic routes of compounds are constantly being developed and updated. I will also mention this compound in other articles.,253-52-1 ,Phthalazine, other downstream synthetic routes, hurry up and to see

Name is Phthalazine, as a common heterocyclic compound, it belongs to phthalazine compound, and cas is 253-52-1, its synthesis route is as follows.

Example 29 Preparation of (RS)-1-(4-fluoro-phenyl)-1,2-dihydro-phthalazine 5.53 ml of a 1.6 M solution of butyllithium in hexane are added dropwise at -78¡ã C. within 20 min. to a solution of 1.48 g of 1-bromo-4-fluoro-benzene in 5 ml of tetrahydrofuran. The resulting white suspension is stirred for a further hour. A solution of 1 g of phthalazine in 5 ml of tetrahydrofuran is added dropwise at -78¡ã C. within 10 min. The reaction mixture is left to warm to room temperature, treated with 50 ml of water and extracted 3 times with 50 ml of dichloromethane each time. The organic phases are combined washed with 50 ml of water and 50 ml of a saturated sodium chloride solution, dried over magnesium sulphate, filtered, the filtrate is concentrated and the residue is chromatographed on 100 g of silica gel with the eluent hexane/ethyl acetate 1:1. 1.49 g (86percent) of (RS)-1-(4-fluoro-phenyl)-1,2-dihydro-phthalazine are obtained as a yellow oil. MS: 227 (M+H)+.

253-52-1, In the field of chemistry, the synthetic routes of compounds are constantly being developed and updated. I will also mention this compound in other articles.,253-52-1 ,Phthalazine, other downstream synthetic routes, hurry up and to see

Reference£º
Patent; Hoffmann-La Roche Inc.; US6114330; (2000); A;,
Phthalazine – Wikipedia
Phthalazine | C8H6N2 – PubChem

The important role of 253-52-1

253-52-1, In the field of chemistry, the synthetic routes of compounds are constantly being developed and updated. I will also mention this compound in other articles.,253-52-1 ,Phthalazine, other downstream synthetic routes, hurry up and to see

Name is Phthalazine, as a common heterocyclic compound, it belongs to phthalazine compound, and cas is 253-52-1, its synthesis route is as follows.

General procedure: CuSCN (121 mg, 1.00 mmol) was suspended in 20 mL deionized water containing 146 mg (1.5 mmol) KSCN and 0.5 mL 17 M NH3 (8.5 mmol) under Ar purge. Qox (70 mg, 0.54 mmol) was added to the suspension, which quickly took on a red-orange color. The suspension was refluxed for 72 h. The red solid product was collected via filtration, washed with deionized water, and dried under vacuum (123 mg, 66percent).

253-52-1, In the field of chemistry, the synthetic routes of compounds are constantly being developed and updated. I will also mention this compound in other articles.,253-52-1 ,Phthalazine, other downstream synthetic routes, hurry up and to see

Reference£º
Article; Ayala, Gerardo; Tronic, Tristan A.; Pike, Robert D.; Polyhedron; vol. 115; (2016); p. 257 – 263;,
Phthalazine – Wikipedia
Phthalazine | C8H6N2 – PubChem

Brief introduction of Phthalazine

The chemical industry reduces the impact on the environment during synthesis,253-52-1,Phthalazine,I believe this compound will play a more active role in future production and life.

253-52-1, In the next few decades, the world population will flourish. As the population grows rapidly and people all over the world use more and more resources, all industries must consider their environmental impact. Phthalazine, cas is 253-52-1,the phthalazine compound, it is a common compound, a new synthetic route is introduced below.

General procedure: To a stirred solution of furan (1.20 g,17.6 mmol) in dry THF (20 mL) was added dropwise n-butyllithium (2.5 M in hexanes, 7.30 mL,18.3 mmol) over a period of 30 min at ?78 ¡ãC. The solution was warmed to ?25 ¡ãC, and stirring wascontinued at this temperature for 30 min. The reaction mixture was cooled back to ?78 ¡ãC, and asolution of 1 (2.00 g, 15.3 mmol) in dry THF (20 mL) was added dropwise over 30 min. The reaction mixture was stirred at this temperature for 2 h. The mixture was poured into saturated NH4Cl(100 mL) and extracted with ethyl acetate (3 ¡Á 50 mL). The combined organic extracts were thenwashed with saturated NaCl (50 mL), dried (MgSO4), filtered, and concentrated under vacuum toafford 3f as a light brown oil. The crude product 3f was dissolved in DCM (30 mL), and triethylamine(2.37 g, 3.26 mL, 23.4 mmol) was added, followed by dropwise addition of acryloyl chloride (1.59 g,1.43 mL, 17.6 mmol) at 0 ¡ãC. The reaction mixture was stirred at 0 ¡ãC for 2 h. The reaction was thenquenched with saturated NaCl (25 mL), and the organic layer was separated. The aqueous layer wasextracted with DCM (2 ¡Á 30 mL), and the combined organic extracts were washed with saturated NaCl(50 mL), dried (MgSO4), filtered, and concentrated to afford the crude product. The product waspurified on a silica gel column eluted with hexanes?EtOAc (7:3) to afford 4f (2.66 g, 60percent) as a yellowliquid.

The chemical industry reduces the impact on the environment during synthesis,253-52-1,Phthalazine,I believe this compound will play a more active role in future production and life.

Reference£º
Article; Nammalwar, Baskar; Muddala, N.Prasad; Bourne, Christina R.; Henry, Mary; Bourne, Philip C.; Bunce, Richard A.; Barrow, Esther W.; Berlin, K.Darrell; Barrow, William W.; Molecules; vol. 19; 3; (2014); p. 3231 – 3246;,
Phthalazine – Wikipedia
Phthalazine | C8H6N2 – PubChem

Analyzing the synthesis route of 253-52-1

The chemical industry reduces the impact on the environment during synthesis,253-52-1,Phthalazine,I believe this compound will play a more active role in future production and life.

253-52-1, In the next few decades, the world population will flourish. As the population grows rapidly and people all over the world use more and more resources, all industries must consider their environmental impact. Phthalazine, cas is 253-52-1,the phthalazine compound, it is a common compound, a new synthetic route is introduced below.

General procedure: A solution of 2.00 g (15.0 mmol) of 2 in 20 mL of dry THF was cooled to 0 ¡ãC, and 8.0 mL of 2.0 M isopropylmagnesium chloride (3b) (16.0 mmol) in ether was slowly added dropwise over 20 min. The reaction was allowed to stir at 0 ¡ãC for 5 h and was then quenched with 50 mL of saturated NH4Cl and extracted with ethyl acetate (3 .x. 50 mL). The combined organic extracts were washed with saturated NaCl, dried (MgSO4), and concentrated under vacuum to give dihydrophthalazine 4b as a viscous, brown oil. This oil was dried under high vacuum for 30 min and was used without further purification.The crude 4b in dichloromethane at 0 ¡ãC was treated, as above, with 1.82 g (2.50 mL, 18.0 mmol) of triethylamine and 1.40 g (1.26 mL, 15.5 mmol) of 5, and the reaction was stirred for 2 h. Work-up and chromatography gave 1.83 g (40percent) of 6b as a viscous, brown oil.

The chemical industry reduces the impact on the environment during synthesis,253-52-1,Phthalazine,I believe this compound will play a more active role in future production and life.

Reference£º
Article; Nammalwar, Baskar; Bunce, Richard A.; Berlin, K. Darrell; Bourne, Christina R.; Bourne, Philip C.; Barrow, Esther W.; Barrow, William W.; European Journal of Medicinal Chemistry; vol. 54; (2012); p. 387 – 396;,
Phthalazine – Wikipedia
Phthalazine | C8H6N2 – PubChem

Downstream synthetic route of Phthalazine

Chemical properties determine the actual use. Each compound has specific chemical properties and uses. We look forward to more synthetic routes in the future to expand reaction routes of Phthalazine, 253-52-1

253-52-1, In the next few decades, the world population will flourish. As the population grows rapidly and people all over the world use more and more resources, all industries must consider their environmental impact. Phthalazine, cas is 253-52-1,the phthalazine compound, it is a common compound, a new synthetic route is introduced below.

General procedure: Phthalazine (1) (91 mg, 0.70 mmol), 1,1-dicyanoalkene 2(0.70 mmol), and isocyanide 3 (0.70 mmol) were dissolvedin acetonitrile (1 ml). After that, distilled water(0.05?0.1 ml) was added to the reaction mixture up tovisible turbidity and stirred at 25?30¡ãC for 12?18 h. Thereaction mixture was evaporated to dryness and product 4was purified by crystallization from ethanol.

Chemical properties determine the actual use. Each compound has specific chemical properties and uses. We look forward to more synthetic routes in the future to expand reaction routes of Phthalazine, 253-52-1

Reference£º
Article; Mironov, Maxim A.; Shulepov, Iliya D.; Kozhikhova, Ksenia V.; Ivantsova, Maria N.; Tokareva, Maria I.; Chemistry of Heterocyclic Compounds; vol. 53; 4; (2017); p. 430 – 433; Khim. Geterotsikl. Soedin.; vol. 53; 4; (2017); p. 430 – 433,4;,
Phthalazine – Wikipedia
Phthalazine | C8H6N2 – PubChem

Introduction of a new synthetic route about Phthalazine

The chemical industry reduces the impact on the environment during synthesis,253-52-1,Phthalazine,I believe this compound will play a more active role in future production and life.

253-52-1, In the next few decades, the world population will flourish. As the population grows rapidly and people all over the world use more and more resources, all industries must consider their environmental impact. Phthalazine, cas is 253-52-1,the phthalazine compound, it is a common compound, a new synthetic route is introduced below.

General procedure: N-heteroarene (1 mmoL, 80 mg), alpha-keto acid (3 mmol), Formic acid (1 mmol, 38 muL), ammonium persulfate (3 mmoL, 685 mg), ferrous sulfate heptahydrate (0.08 mmoL, 22 mg) and 20 mL of mixed solvent (DCM: H2O = 3: 1) , 0.1 mL DMSO was added into a 25 mL round-bottomed flask. The mixture was stirred at 40 oC until TLC analysis indicating that the reaction was complete (witnessed by the disappearance of the N-heteroarene). After separation of organic phase, the residue was neutralized by 0.1 M sodium hydroxide solution, then extracted with DCM (3¡Á20 mL), combined the organic phases, dried over Na2SO4, and concentrated in vacuo. The residue was N-heteroarene (1 mmoL, 80 mg), alpha-keto acid (3 mmol), Formic acid (1 mmol, 38 muL), ammonium persulfate (3 mmoL, 685 mg), ferrous sulfate heptahydrate (0.08 mmoL, 22 mg) and 20 mL of mixed solvent (DCM: H2O = 3: 1) , 0.1 mL DMSO was added into a 25 mL round-bottomed flask. The mixture was stirred at 40 oC until TLC analysis indicating that the reaction was complete (witnessed by the disappearance of the N-heteroarene). After separation of organic phase, the residue was neutralized by 0.1 M sodium hydroxide solution, then extracted with DCM (3¡Á20 mL), combined the organic phases, dried over Na2SO4, and concentrated in vacuo. The residue was purified by column chromatography on silica gel using a mixture of petroleum ether/EtOAc (v : v = 20 : 1) as eluent to afford the desired pure product.

The chemical industry reduces the impact on the environment during synthesis,253-52-1,Phthalazine,I believe this compound will play a more active role in future production and life.

Reference£º
Article; Wang, Xiu-Zhi; Zeng, Cheng-Chu; Tetrahedron; vol. 75; 10; (2019); p. 1425 – 1430;,
Phthalazine – Wikipedia
Phthalazine | C8H6N2 – PubChem

Application of 1,3-Dimethyl-1H-benzo[d]imidazol-3-ium iodide

253-52-1, In the field of chemistry, the synthetic routes of compounds are constantly being developed and updated. I will also mention this compound in other articles.,253-52-1 ,Phthalazine, other downstream synthetic routes, hurry up and to see

As a common heterocyclic compound, it belongs to phthalazine compound, name is Phthalazine, and cas is 253-52-1, its synthesis route is as follows.

General procedure: (NH4)2C2O4¡¤H2O (0.085g, 0.60mmol) was dissolved in water (5ml) and slowly added to the methanolic solution of CuCl2¡¤2H2O (0.1g; 0.59mmol) and suitable N-donor ligand. The resulting solution was kept for evaporation at room temperature, and after a few days green crystals of 1, 2 and 3 were obtained, filtered off and dried in air.

253-52-1, In the field of chemistry, the synthetic routes of compounds are constantly being developed and updated. I will also mention this compound in other articles.,253-52-1 ,Phthalazine, other downstream synthetic routes, hurry up and to see

Reference£º
Article; Machura; Switlicka-Olszewska; Kruszynski; Gron; Oboz; Duda; Polyhedron; vol. 62; (2013); p. 158 – 168;,
Phthalazine – Wikipedia
Phthalazine | C8H6N2 – PubChem

Extracurricular laboratory: Synthetic route of 253-52-1

Chemical properties determine the actual use. Each compound has specific chemical properties and uses. We look forward to more synthetic routes in the future to expand reaction routes of Phthalazine, 253-52-1

253-52-1, In the next few decades, the world population will flourish. As the population grows rapidly and people all over the world use more and more resources, all industries must consider their environmental impact. Phthalazine, cas is 253-52-1,the phthalazine compound, it is a common compound, a new synthetic route is introduced below.

Example 13 Preparation of 4-(4-Acetylaminophenyl)-1,2-Dihydro-6-Methylthiophthalazine (15) To a solution of the phthalazine 7 (130 mg, 0.42 mmol) in acetic acid (7 mL) was added NaBH3CN in portions. After stirring for 15 min, water was added. The aqueous phase was neutralized by NaHCO3, and then extracted with DCM. The combined organic phase was dried over Na2SO4. Removal of the solvent afforded the product (97 mg, 74percent) which can be used directly for next step.

Chemical properties determine the actual use. Each compound has specific chemical properties and uses. We look forward to more synthetic routes in the future to expand reaction routes of Phthalazine, 253-52-1

Reference£º
Patent; Pei, Xue-Feng; Li, Baoqing; Maccecchini, Maria-Luisa; US2002/6925; (2002); A1;,
Phthalazine – Wikipedia
Phthalazine | C8H6N2 – PubChem

The important role of 253-52-1

The chemical industry reduces the impact on the environment during synthesis,253-52-1,Phthalazine,I believe this compound will play a more active role in future production and life.

253-52-1, In the next few decades, the world population will flourish. As the population grows rapidly and people all over the world use more and more resources, all industries must consider their environmental impact. Phthalazine, cas is 253-52-1,the phthalazine compound, it is a common compound, a new synthetic route is introduced below.

A. A solution of phthalazine (2.5 g, 19.2 mmol) in concentrated sulfuric acid (30 mL) is treated slowly with potassium nitrate (2 g, 19.2 mmol). After 18 h the solution is cooled. Water (30 mL) is added. The solution is basified using 10 M NaOH to pH 13 (litmus). The solution is cooled for 18 h, filtered to give 5-nitro-phthalazine (0.93 g).

The chemical industry reduces the impact on the environment during synthesis,253-52-1,Phthalazine,I believe this compound will play a more active role in future production and life.

Reference£º
Patent; Calvo, Raul R.; Cheung, Wing S.; Player, Mark R.; US2006/116368; (2006); A1;,
Phthalazine – Wikipedia
Phthalazine | C8H6N2 – PubChem