New learning discoveries about 119-39-1

With the rapid development of chemical substances, we look forward to future research findings about Phthalazin-1(2H)-one

Phthalazin-1(2H)-one, cas is 119-39-1, it is a common heterocyclic compound, the phthalazine compound, its synthesis route is as follows.,119-39-1

EXAMPLE 6 Preparation of 1-Chlorophthalazine Hydrochloride A 3-neck 2 L round-bottomed flask was charged with 584 mL of phosphorous oxychloride (306 g, 2 mol. eq.) and cooled to about 0 to 5 C. To this was added 73 g of powdered phthalazinone (0.5 mol eq.). The reaction mass appeared as a suspension and was heated to about 60 C. with stirring. The progress of the reaction was monitored by HPLC. While the reaction mixture was maintained at approximately 50 C., about 65% of the phosphorous oxychloride was distilled out under vacuum. The concentrated reaction mixture was cooled to room temperature, about 375 mL of ethyl acetate was added, and then the mixture was purged with HCl gas for about 30 min.; thereafter, the mixture was cooled to a temperature of 0 to 5 C. and stirred for about one hour. The resulting pale yellow material was filtered and washed with 150 mL of cold ethyl acetate. The isolated material was 1-chlorophthalazine hydrochloride, which was dried under vacuum for about 3 hrs at 30 C. Yield=65%; purity=99%;

With the rapid development of chemical substances, we look forward to future research findings about Phthalazin-1(2H)-one

Reference£º
Patent; Navinta LLC; US2007/129546; (2007); A1;,
Phthalazine – Wikipedia
Phthalazine | C8H6N2 – PubChem

Downstream synthetic route of 119-39-1

As the paragraph descriping shows that 119-39-1 is playing an increasingly important role.

119-39-1, Phthalazin-1(2H)-one is a phthalazine compound, ?involved in a variety of chemical synthesis. Rlated chemical reaction is continuously updated

General procedure: The Mitsunobu reaction was carried out under argon. To a stirred solution of TPP (0,0102 mol) in dry THF (10 ml) was slowly added DEAD (0,0102 mol, solution in toluene c ? 40%) at -10C. Then a solution of phthalazinone 1 (0.0068 mol) in THF (44 ml) was added dropwise. The whole lot was mixed for 15 min at -10C and next was added the appropriate derivative of N-methylethanolamine 7 or 8 (0.00748 mol) in THF (5 ml) at -10C. The mixture was stirred during 2 hrs at -10C, after which time, the reaction mixture was warmed to ambient temperature and stirred in this conditions for 20 hrs. All volatile materials were removed under reduced pressure, ethyl ether (20ml) was added to the residue and the whole lot was stirred for 0.5 hrs at ambient temperature. The separate white solid was collected by flirtation, washed with ether and filtrate was evaporated to dryness. The residue was subjected to column chromatography to give the pure product 11., 119-39-1

As the paragraph descriping shows that 119-39-1 is playing an increasingly important role.

Reference£º
Article; Malinowski, Zbigniew; Szczes?niak, Aleksandra K.; Pakulska, Wanda; Sroczy?ski, Dariusz; Czarnecka, Elzbieta; Epsztajn, Jan; Synthetic Communications; vol. 44; 24; (2014); p. 3572 – 3581;,
Phthalazine – Wikipedia
Phthalazine | C8H6N2 – PubChem

Brief introduction of 119-39-1

119-39-1, The synthetic route of 119-39-1 has been constantly updated, and we look forward to future research findings.

119-39-1, Phthalazin-1(2H)-one is a phthalazine compound, ?involved in a variety of chemical synthesis. Rlated chemical reaction is continuously updated

General procedure: The precursor lactam (1 mmol) was dissolved in DMF-TEA 1:1(2 mL), then K2CO3 (0.410 g, 3 mmol), CuI (190 mg, 1 mmol),PdCl2(PPh3)2 (17.5 mg, 0.025 mmol) and aryl halide (1.1 mmol)were added to the solution. The reaction mixture was stirred underargon, at 110C for overnight. The reaction mixture was ltered andbrine (30 mL) was added to the solution. The precipitated solid wasltered off then washed with brine and water. The crude productwas puried by column chromatography (on silica, using DCM orDCM-MeOH 100-5:1 mixtures as eluent) and subsequent crystal-lization from MeOH, EtOH,iPrOH,tBuOH, MeOH-water or EtOH-water.

119-39-1, The synthetic route of 119-39-1 has been constantly updated, and we look forward to future research findings.

Reference£º
Article; Jernei, Tamas; B?sze, Szilvia; Szabo, Rita; Hudecz, Ferenc; Majrik, Katalin; Csampai, Antal; Tetrahedron; vol. 73; 43; (2017); p. 6181 – 6192;,
Phthalazine – Wikipedia
Phthalazine | C8H6N2 – PubChem

Some tips on Phthalazin-1(2H)-one

With the complex challenges of chemical substances, we look forward to future research findings about 119-39-1,belong phthalazine compound

As a common heterocyclic compound, it belongs to phthalazine compound, name is Phthalazin-1(2H)-one, and cas is 119-39-1, its synthesis route is as follows.,119-39-1

General procedure: The precursor lactam (1 mmol) was dissolved in DMF-TEA 1:1(2 mL), then K2CO3 (0.410 g, 3 mmol), CuI (190 mg, 1 mmol),PdCl2(PPh3)2 (17.5 mg, 0.025 mmol) and aryl halide (1.1 mmol)were added to the solution. The reaction mixture was stirred underargon, at 110C for overnight. The reaction mixture was ltered andbrine (30 mL) was added to the solution. The precipitated solid wasltered off then washed with brine and water. The crude productwas puried by column chromatography (on silica, using DCM orDCM-MeOH 100-5:1 mixtures as eluent) and subsequent crystal-lization from MeOH, EtOH,iPrOH,tBuOH, MeOH-water or EtOH-water.

With the complex challenges of chemical substances, we look forward to future research findings about 119-39-1,belong phthalazine compound

Reference£º
Article; Jernei, Tamas; B?sze, Szilvia; Szabo, Rita; Hudecz, Ferenc; Majrik, Katalin; Csampai, Antal; Tetrahedron; vol. 73; 43; (2017); p. 6181 – 6192;,
Phthalazine – Wikipedia
Phthalazine | C8H6N2 – PubChem

Some tips on 119-39-1

119-39-1 Phthalazin-1(2H)-one 8394, aphthalazine compound, is more and more widely used in various fields.

With the rapid development and complex challenges of chemical substances, new drug synthesis pathways are usually the most effective.119-39-1,Phthalazin-1(2H)-one,as a common compound, the synthetic route is as follows.

General procedure: Method A The Mitsunobu reaction was carried out under argon. Diethyl azodicarboxylate (1.03 mmol, solution in toluene c?40%) was slowly added to a stirred solution of triphenylphosphine (1.03 mmol) in dry THF (10mL) at the temperature between -10C and -5C. Then a solution of phthalazinone 2 (0.684 mmol) in THF (10 mL) was added dropwise. The whole lot was mixed for 15 min at this temperature and next the appropriate alcohol (0.753 mmol) in THF (5 mL) was added at -10 to -5C. The mixture was stirred during 2 h at this conditions, after, which time the reaction mixture was warmed to ambient temperature and stirred in this conditions for 24h. All volatile materials were removed under reduced pressure, ethyl ether (5 mL) was added to the residue, and the whole lot was stirred for 0.5 h at an ambient temperature. The separate white solid was collected by flirtation and washed with ether, and the filtrate was evaporated to dryness. The product was separated and purified by flash chromatography. Method B The Mitsunobu reaction was carried out under argon. To a round bottom flask were added phthalazinone 2 or 3 (1.78 mmol), alcohol (2.67 mmol), triphenylphosphine (2.67 mmol) and THF (40 mL). Then, the solution was cooled to the temperature -20C for 15 min and diethyl azodicarboxylate (2.67mmol, solution in toluene c?40%) was added dropwise to the solution. The reaction was stirred at -20C for 1h, and then the cold bath allowed to slowly warm to an ambient temperature and stirred in this conditions for 24h. All volatile materials were removed under reduced pressure, diethyl ether (15 mL) was added to the residue, and the whole lot was stirred for 0.5 h at an ambient temperature. The separate white solid was collected by flirtation and washed with ether, and the filtrate was evaporated to dryness. The product was separated and purified by flash chromatography., 119-39-1

119-39-1 Phthalazin-1(2H)-one 8394, aphthalazine compound, is more and more widely used in various fields.

Reference£º
Article; Malinowski, Zbigniew; Fornal, Emilia; Sieroci?ska, Beata; Czeczko, Renata; Nowak, Monika; Tetrahedron; vol. 72; 49; (2016); p. 7942 – 7951;,
Phthalazine – Wikipedia
Phthalazine | C8H6N2 – PubChem

Application of 1-(2-Chloroethyl)-2-imidazolidinone

As the rapid development of chemical substances, we look forward to future research findings about 119-39-1

A common heterocyclic compound, the phthalazine compound, name is Phthalazin-1(2H)-one,cas is 119-39-1, mainly used in chemical industry, its synthesis route is as follows.,119-39-1

EXAMPLE 7B Preparation of Hydralazine Base Using Isopropanol A 500 mL, 3-necked, round-bottom flask fitted with a temperature probe and condenser was charged with 45 mL of hydrazine hydrate and 25 mL of isopropanol; the solution was cooled to 0 to 5 C. About 9 g of 1-chlorophthalazine salt were added in portions at a rate to maintain the solution temperature at 0 to 5 degrees. The solution was stirred at 20 to 25 C. for about 24 hrs. The reaction mixture was then cooled to 0 to 5 C. and stirred for 3 hrs. The resulting solid material was filtered from the solution, washed with 15 mL of cold isopropanol, and dried under vacuum at 35 C. Yield 86%.

As the rapid development of chemical substances, we look forward to future research findings about 119-39-1

Reference£º
Patent; Navinta LLC; US2007/129546; (2007); A1;,
Phthalazine – Wikipedia
Phthalazine | C8H6N2 – PubChem

Some tips on 119-39-1

119-39-1 Phthalazin-1(2H)-one 8394, aphthalazine compound, is more and more widely used in various fields.

With the rapid development and complex challenges of chemical substances, new drug synthesis pathways are usually the most effective.119-39-1,Phthalazin-1(2H)-one,as a common compound, the synthetic route is as follows.

A mixture of 4-(2-bromoethoxy)benzaldehyde (4.97g), 1(2H)-phthalazinone (3.27 g), potassium carbonate (6.20 g) and N,N-dimethylformamide (50 ml) was stirred at 80C for 5 hours. After cooling, the reaction mixture was poured into water, which was extracted with ethyl acetate. The ethyl acetate layer was washed with saturated aqueous sodium chloride solution, dried (MgSO4) and concentrated to obtain 4-[2-[1-oxo-2(1H)-phthalazinyl]ethoxy]benzaldehyde (5.36 g, yield 84%) as colorless crystals. This was recrystallized from ethyl acetate-hexane. Melting point: 126-127C, 119-39-1

119-39-1 Phthalazin-1(2H)-one 8394, aphthalazine compound, is more and more widely used in various fields.

Reference£º
Patent; Takeda Chemical Industries, Ltd.; EP1228067; (2004); B1;,
Phthalazine – Wikipedia
Phthalazine | C8H6N2 – PubChem

Share a compound : 119-39-1

As the rapid development of chemical substances, we look forward to future research findings about 119-39-1

Phthalazin-1(2H)-one, cas is 119-39-1, it is a common heterocyclic compound, the phthalazine compound, its synthesis route is as follows.,119-39-1

General procedure: The precursor lactam (1 mmol) was dissolved in DMF-TEA 1:1(2 mL), then K2CO3 (0.410 g, 3 mmol), CuI (190 mg, 1 mmol),PdCl2(PPh3)2 (17.5 mg, 0.025 mmol) and aryl halide (1.1 mmol)were added to the solution. The reaction mixture was stirred underargon, at 110C for overnight. The reaction mixture was ltered andbrine (30 mL) was added to the solution. The precipitated solid wasltered off then washed with brine and water. The crude productwas puried by column chromatography (on silica, using DCM orDCM-MeOH 100-5:1 mixtures as eluent) and subsequent crystal-lization from MeOH, EtOH,iPrOH,tBuOH, MeOH-water or EtOH-water.

As the rapid development of chemical substances, we look forward to future research findings about 119-39-1

Reference£º
Article; Jernei, Tamas; B?sze, Szilvia; Szabo, Rita; Hudecz, Ferenc; Majrik, Katalin; Csampai, Antal; Tetrahedron; vol. 73; 43; (2017); p. 6181 – 6192;,
Phthalazine – Wikipedia
Phthalazine | C8H6N2 – PubChem

New learning discoveries about 119-39-1

119-39-1, As the paragraph descriping shows that 119-39-1 is playing an increasingly important role.

With the rapid development and complex challenges of chemical substances, new drug synthesis pathways are usually the most effective.119-39-1,Phthalazin-1(2H)-one,as a common compound, the synthetic route is as follows.

EXAMPLE 1 (COMPARATIVE) Preparation of 1-Chlorophthalazine According to the process disclosed in U.S. Pat. Pub. 20050137397, the disclosure of which is incorporated herein by reference, one mole equivalent (250 g) of 1(2H)-phthalazinone and 3.8 mole equivalents (775 g) of phosphorus oxychloride were charged into a 3-L, 3-necked flask fitted with a temperature probe and condenser. The slurry was stirred and heated to 80 C., maintained at that temperature for 30 minutes, and then the heat source was removed. The mixture was allowed to cool to room temperature and 1.6 L of hexane were added. The resulting slurry was stirred for about 30 minutes, allowed to settle, and the hexane layer was decanted; the addition of hexane and decantation was repeated three times. Then 1.6 L of tetrahydrofuran was added to the slurry and a yellow precipitate formed. The yellow solid (reported in the ‘397 application as an off white solid) was isolated by filtration and then washed with 250 mL of cold tetrahydrofuran to afford a 50% yield (reported yield in the ‘397 application is 85 to 100%) of 1-chlorophthalazine.

119-39-1, As the paragraph descriping shows that 119-39-1 is playing an increasingly important role.

Reference£º
Patent; Navinta LLC; US2007/129546; (2007); A1;,
Phthalazine – Wikipedia
Phthalazine | C8H6N2 – PubChem

Downstream synthetic route of Phthalazin-1(2H)-one

With the complex challenges of chemical substances, we look forward to future research findings about Phthalazin-1(2H)-one,belong phthalazine compound

As a common heterocyclic compound, it belongs to quinuclidine compound,Quinuclidine-4-carboxylic acid hydrochloride,40117-63-3,Molecular formula: C8H14ClNO250,mainly used in chemical industry, its synthesis route is as follows.,119-39-1

A mixture of 3-(2-bromoethoxy)benzaldehyde (6.00 g), 1(2H)-phthalazinone (4.21 g), potassium carbonate (7.24 g) and N,N-dimethylformamide (40 ml) was stirred at 80C for 5 hours. After cooling, the reaction mixture was poured into water, which was extracted with ethyl acetate. The ethyl acetate layer was washed with saturated aqueous sodium chloride solution, dried (MgSO4) and concentrated to obtain 3-[2-[1-oxo-2(1H)-phthalazinyl]ethoxy]benzaldehyde (6.94 g, yield 90%) as colorless crystals. This was recrystallized from acetone-hexane. Melting point: 110-111C

With the complex challenges of chemical substances, we look forward to future research findings about Phthalazin-1(2H)-one,belong phthalazine compound

Reference£º
Patent; Takeda Chemical Industries, Ltd.; EP1228067; (2004); B1;,
Phthalazine – Wikipedia
Phthalazine | C8H6N2 – PubChem